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Abstract: We develop the Mueller-Regge formalism for inclusive photo- and electroproduction of 
pions in the photon fra~nentation sector. We discuss under what assumptions about the 
analyticity of the six-point function one can derive a Sommerfeld-Watson representation, 
which involves integrals over the crossed-channel helicities. 

In particular we examine the properties of the so-called helicity-pole limit (H.P.L.), which is 
relevant in realizing the Mueller-Regge expansion in the fragmentation region. In the case of 
the four-point function there exist relations among the s-channel helicity amplitudes at high 
energies, if only Regge singularities of definite normality are exchanged in the t-channel 
(Stichel relations). One of the main points we make here is that in the case of inclusive dis- 
tributions, these properties carry over to H.P.L. if we take into account only the leading hell- 
city pole. An important consequence of these relations is that the inclusive photoproduction 
distributions vanish as k~- ~ 0 (k T being the transverse momentum of the pions). 

1. Introduct ion 

In recent years much work has been done on the phenomenology of  inclusive 
distributions. However although there have been a number of  a t tempts  to understand 
the detailed way, in which a Regge expansion arises in the case of  an inclusive dis- 
tr ibution [ I - 3 ] ,  some aspects of  this problem have not been adequately treated. In 
particular, when we include external helicity, it is important  to see if  and how those 

propert ies which one normally associates with a Regge pole theory o f  a two-body 
process, carry over to the case of  an inclusive distribution. Photo- and electroproduc- 
tion have always been a good testing ground for the helicity dependent properties 
o f  Regge theory [4] and for example, it was pointed out by, Stichel [5], that when 
definite normali ty is exchanged in the t-channel, certain linear combinations of  the 
helicity amplitudes vanish. This has the important  consequence that the unpolarized 
differential cross section for photoproduct ion  vanishes as t -~ 0 [6]. In a previous 
work [7] we argued on heuristic grounds (by using elementary exchanges) that com- 
pletely analogous relations exist for inclusive photo- and electroproduction of  pions 
in the photon  fragmentation sector. Fur ther  we showed in ref. [7] that as a conse- 
quence of  these relations in a purely Regge pole model  the inclusive photoproduc-  
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tion distributions of pions vanish as kT ~ 0 (k T being the transverse momentum of 
the pions). Experimentally [8] this and related properties are not in evidence and 
it was concluded that absorption corrections (i.e. Regge cut contributions) are needed 
in order to reproduce the data [9]. In order that this interpretation is really binding 
it is necessary to establish that the symmetry relations mentioned above are indeed 
a property of the inclusive distributions. We shall attempt here on a more formal 
level to establish the Stichel relations for inclusive photo- and electroproduction of 
pions. This we do by deriving a generalized Sommerfeld-Watson representation of 
the inclusive distribution, starting from a model of the analyticity of the correspond- 
ing six-point function. Our analysis differs in certain important points from refs. 
[ 1-3] and is most directly related to the approach of White developed for the five- 
point function [ 10]. The latter involves a direct generalization of the usual Gribov- 
Froissart continuation of the partial wave amplitudes and Sommerfeld-Watson trans- 
formation of the partial-wave summation *. This approach is the most appropriate 
if one wants to examine the helicity dependence and the symmetry relations that 
arise if the process is determined by Regge poles carrying definite quantum numbers, 
in particular normality. 

In sect. 2 we review the definitions and kinematics involved in a Mueller-Regge 
analysis of inclusive photo- and electroproduction of pions in the photon-fragmen- 
tation region. In particular we shall recall why the relevant asymptotic limit for the 
missing mass discontinuity is a helicity pole limit [1-3].  In sect. 3 we derive the 
generalized Sommerfeld-Watson representation and discuss how poles in the complex 
angular momentum plane determine the asymptotic behaviour in the helicity pole 
limit. We discuss the crossing and normality properties of the helicity amplitudes in 
sect. 4 and derive the Stichel relations for the inclusive distributions in the helicity 
pole limit in sect. 5. In the appendix we discuss the model of the analyticity on which 
our analysis is based. 

2. Definitions and kinematics 

The essential idea behind a Regge expansion of the one-particle distribution 
7P -+ ~rX is to assume that the t-channel six-line function (fig. la): 

T (t). = T(~/(q, X) + 7r(-k) + ~/(-q' ,  X') + ~r(k') ~ f i ( -p )  + p(p')) (2.1) 
~.', A 

can be related by crossing to the physical region of the six-line function in the s- 
channel (fig. lb): 

T(S) = T(X(q, X) + p(p) + 7r(k') ~ "y(q', X') + p(p ' )  + rr(k)) (2.2) 
~.',Tt " 

The latter, through the Mueller optical theorem, determines the one-particle distri- 
bution, i.e. 

* For a review of Regge theory, see Collins [11]. 
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Fig. l. (a) and (b) show configurations of the six-point function "rp~r + y'p'Tr', (a) depicting the 
t- or crossed-channel and (b) the s- or direct-channel missing mass discontinuity. 

2k 0 d3° =Feffl G (DiSCMx "r(s) ~ (2.3) 
d~k 2d , h ~K', kJk=k ', p=p', q=q' ' 

(where Feffis the effective flux factor for the virtual photon [7]). 
In both (2.1) and (2.2) it is understood that we averaged over the proton helicities. 

The configuration in fig. 1 a will be referred to as the crossed channel (or t-channel), 
while fig. lb shall be referred to as the direct channel (or s-channel) of  the six-line 
function. A symmetric set of  four vectors and invariants for the various channels are 
defined in fig. 1 c, so that 

s = ( p + q )  2 , s ' = ( p ' + q ' )  2, s o = M 2  = ( p + q - k ) Z = ( p + Q 1 ) 2  , 

s 1 = ( k - k '  + q,)2 = ( q_Q3)2  , (2.4) 

s2 = (p _ p '  _ q,)2 = (q, + Q3)2 , 
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s 3 = ( k - k ' )  2 t 1 = ( q - k )  2 
(2.4) 

t2 = (q, _ k,)2 , t3 = (p _ p,)2 

For defining the kinematics of the crossed channel partial-wave expansions we 
need the c.m.s, systems "1", "2" and "3" which are defined as follows: 

"1" c.m.s, of 7(q, X) 7r(-k) [q + ( -k)  = 01 : (2.5) 

Q1 = q - k = (x/71,0, 0, 0) , 

q =(Eq,q) ,  0=1-~=(01,~01),  Iql=2@FlX~(tl ,q 2 m2u) 

k = ( - E k , q ) ,  Ek = 21/7_ (t 1 + rn2_  q2).  
",/,1 

Eq = 2 ~ t l ( t l  + q 2 -  m2) ,  

"2" c.m.s, of 7r(k') 7( -q ' ,  X') [k' + ( -q ' )  = 0] " 

Q2 = k' - q' = (V~2, 0, 0, 0) ,  

~' q' =(02,tP2 ) 
= I q ' l  

q' = (-Eq, ,  q ' ) ,  

k '  = (Ek,, q ' ) ,  Eq, = l'---~'-(t 2 + q2 _ m21r ) 
2V~2 

"3" c.m.s, ofp(p ' )  p (-P) [P' + ( -p)  = 01 

Q3 = P ' - P  = (x/~3' 0' 0' 0) ' 
t p = ( e p , p ) ,  

p = (-Ep p) 

Iq'l = ~ X~(t 2, q2, m2r) 

_ 1 m 2 
Ek ' 2X/~2(t 2+ . - q 2 ) "  

(2.6) 

(2.7) 

/3= p = 0 3, % )  , 

IPl = ~ (t 3 -  4m2) ~ • 

The center-of-mass systems "1" and "2" can be reached by boots along the z-axis, 
i.e. 

Q] = Bz(X1 ) (V~l , O, O, O) = ( ~ 1  cosh X1, O, O, x/rtl sinh X1), 
(2.8) 

QS2 = Bz(X2) ( ~ 2 '  0, 0, O) = ( ~ 2  cosh X2, 0, 0, ~ 2  sinh X2 ) . 

The boost parameters X1 and ×2 are related to t l ,  t 2 and t 3 respectively by 
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sinh Xl = (X(t 1 , t 2, t 3 ) / 4 t l t 3  )] , sinh X2 = - (X(t l, t 2, t3)/4t2t3)] , (2.9) 

so that from (2.8) 

Q~ +Q~ =(V~l  coshx1 +x /~2coshx2 ,0 ,  O,O ) . (2.10) 

We define 

C i = cosh X~., S i = sinh Xi . (2.11) 

Then the four vectors q, k, k', q', p and p' are represented by: 

q = ( C 1 E  q + S l l q [  cos01,  [ql sin01 costp 1 , [ql sin01 sintp 1 , S 1 E  q + C l l q [ c o s O  1) , 

k = ( - C 1 E  k + S l lql  cos 01, r q I sin 01 cos ~1' I ql sin 01 sin tp 1, - S  1Eq + C llq I cos 01) ,  

q' = ( - C 2 E  q, + S 2 l q l c o s  02, [q'l sin 02cos '#2' [q'l sin 02sin s02, - S 2 E  q, + C2 [q'lcos 02) 

k '  = (C2E k, + S2[q'l cos 62, Iq'f sin 02 cos ¢2,[q'l sin 62sin ¢2,S2Eq,  + C2lq'l cos 02),  

p = ( -Ep ,  Ipl sin 03cos ~P3' [pl sin 03 sin ~P3' [pl cos 03) , 

p ' =  (Ep, IPl sin 03 cos tp 3, IPl sin 03 sin ~o3, Ipl cos 03) .  (2.12) 

For defining the t-channel partial-wave expansion we use the eight variables 

t l , t 2 , t 3 , 0 1 , ~ l , 0 2 , ¢ 2 , 0 3  , (2.13) 

and for the crossing to the direct channel the set of  nine symmetric invariants 

s, s', s O, Sl, s2, s3, t l ,  t2, t 3 . (2.14) 

defined in (2.4). Only eight of  the above invariants are independent there being one 
non-linear constraint (arising from the dimensionality of  space time). We can avoid 
this constraint by restricting ourselves to a submanifold, in which the four 4-vectors, 
whose associated channel invariants are all t variables, are linearly dependent (see 
sect. 3 and the appendix). The nine invariants (2.4) are related to the eight variables 
t l ,  t 2, t3, 01, tpl , 02, ~o 2 and 03(bY setting ¢3 = 0): 

s - m 2 -  q2 = 2pq = - 2 E p ( C I E  q + S 1 [ql cos 01) - 2 [Pl [q I sin 03 sin 01 cos ¢1 

- 2 Ipl cos  03(S1E q + C 1 Iql cos 01 ) ' 

s ' -  m 2 -  q2 = 2p'q '  = - 2 E p ( C 2 E  q, - S2[q'l cos 02) - 2 Ipl Iq'l sin 03 sin 02 cos ~02 

+ 2 [p[ cos 0 3 ($2E  q, - C21q'l cos 02 ) ,  

M2x =m 2 + t a - 2gp ~ C 1 + 2 Ipl x/q1S 1 cos0 3 , (2.15) 
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Sl = t3 + q2 _ 2 ~  3 (CIE q + St Iql cos 01) ,  

s2 = t3 + q2 _ 2V~3 (C2Eq, _ S21q, I cos 02) , 

s 3 = 2m2 + 2 (C1E k - S  llql cos01 ) (C2E k, +S21q'l cos 02) (2.15) 

+ 2 Iq I Iq'l sin 01 sin 02 cos (~01 - ¢2 ) - 2 (S1E k - C 11ql cos 01) 

X (S2E q, + C21q'l cos 02) . 

2.1. Double and triple Regge limits 

We are interested in the double (D.R.L.) and the triple (T.R.L.) Regge limits of  
the forward direct-channel amplitudes defined above. These are given by: 

D.R.L.: s ~ s ' -~  0% all other variables fixed and 

so=M2, t l = t 2 = t ,  t 3 = 0 ,  Sl=S2=q 2, s3=0( .  2"16) 

T.R.L.: s/M 2 ~ s'/M 2 --,co, all other variables fixed as in D.R.L. 

Clearly the T.R.L. is a further asymptotic limit to the D.R.L., so that one should 
consider the latter first. These limits are however problematic. In particular there exists 
more than one route, by which the D.R.L. can be reached kinematically. For example, 
if we divide the limit into two steps: L 1 is going to the forward direction 
(t 1 --* t 2 = t, t 3 --* 0) and L 2 is the direct asymptotic limit s, s' ~ ,% other variables 
fixed. When realizing L 1 and L 2 in terms of the Regge variables (2.13) one sees that 
L 1L 2 and L 2 L l are not necessarily equivalent. In fact by requiring these limits to 
commute one obtains additional constraints. Let us beginn by analysing the limit L 1. 
Here the relevant quantities in the relationship between the Regge variables (2.13) 
and the invariants (2.14) are the boost parameters Xi (i = 1 ,2)  defined in (2.9), i.e. 

s i n h x i = { 4 t ~ . t 3 ( t 3 - ( x / ~ l + G ) 2 ) ( t 3 - ( V ~ l - G ) 2 ) }  ~ . (2.17) 

From (2.17) one readily sees that the limit t I --* t 2 --* t, t 3 ~ 0 depends crucially on 
the path taken. For example: 

(a) lim lira s inhxi  = i  , 
t 3 ~ 0  t l  --* t 2 

(b) lim lim sinh Xi = 0 
t 3 -~ 0 t a = (X/~l-+X/~2) 2 

(c) lim lim sinh X i  = oo 
tl'-+ t 2 t3--* 0 
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The correct limit presumably depends on the dynamics. We shall later use possibility 
(a), which is consistent with k = hA:'. In this case 

C 1-~C 2 = 0 ,  S 1 =S 2 = i ,  p = i m ,  

so that one reads from (2.15) 

_ m 2 _  q2 =_2 im Iql sin 03 sin 01 cos¢ l  + ~ t  (t + q 2 _  m 2) cos 0 3 ,  

(2.18) 

s' - m  2 - q 2 = - 2 i m l q l s i n O  3 sin02cosso 2 - ~ t  ( t + q 2 - m  2) cos03 

Sl = s2 = q 2 ,  

2 = m 2  M X + t -  2m cos 03 , 

S3 = 2(m 2 + q2) (cos 01 cos 02 + sin 01 sin 02 cos (~Pl -- ¢2) + E K E ) "  

Now L 2 corresponds to taking 

sin 01 cos ~p 1 , sin 02 cos ~02 - ~ '  , (2.19) 

with the constraint 

cos 01 cos 02 + sin 01 sin 02 cos (¢1 - ~02) = l . (2.20) 

The degree of ambiguity in (2.20) is clear. In particular, if we take sin 01, sin 02 ~ ~ ,  
~°1 = ~P2 fixed, we have a Regge pole limit, while on the other hand, if we take 
cos ¢1 '  cos ~2 ~ ,,o, cos 01 , cos 02 fixed, we have the helicity pole limit. To see that 
the triple Regge limit, from the kinematical point of  view, corresponds to the latter, 
one need only consider the second ordering L l L 2 (i.e. L 2 first), where L 2 is the limit 
s, s' -+ ~,,, t 1, t2, t 3 fixed and t 3 4: 0, Assuming either cos 0 i and/or cos ~Pi ~ 
(i = 1,2) we have 

s = - 2 E p S  l l q l c o s O 1 - 2 [ p l l q l s i n O  3 s i n 0 1 c o s ¢ l - 2 1 p l l q l C  l c o s 0 3  c o s 0 1 ,  

s' = 2EpS 2 I q ' l  cos 0 2 - 2 I p l l q ' l  sin 03 sin 02 cos ~P2 - 2 Ip l lq ' l  C 2 cos 03 cos 02 , 

s 1 = - 2  V~3 S 11ql cos 01 , (2.21) 

s 2 = 2v~3S21q ' I  cos 02 , 

s 3 = - 2  I q [ I q'l (S 1S 2 - C 1 C 2) cos 01 cos 02 + 2 I q I I q'l sin 01 sin 02 cos (~o 1 - ¢2 ) . 

Hence we see that if the D.R.L. is reached through cos 01'  cos 0 2 ~ ~ ,  then s l ,  s 2 
and s 3 ~ oo. However in the forward direction we know s 1 = s 2 = q2 and s 3 = 0. This 
means on the grounds of smoothness we must opt for the helicity pole limit, since 
cos ~01, cos tp2 -+ ~ is not problematic with respect to the interchange of  limits. 
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Since we shall be imposing the constraint k = Xk', it is convenient to use the order. 
ing of  the limits L2L 1' by going first to the forward direction t 1 --> t 2 then t 3 ~ 0. 
This leads to constraints on 01 and 02 which follow from (2.12). The derivation goes 
as follows. From t 1 ~ t 2 we have [ql -'- I q'l, Eq = Eq, and E k = Ek,. Then we take 
k = k' ,  which according to (2.12) is equivalent to 

(1) -C1Ek+Sllql cos01 =C2E2+S21ql cos0 2 , 

(2) sin 01 cos ~o 1 = sin 02 cos ¢2 ' (2.22) 

(3) sin 01 sin ~01 = sin 02 sin ~2 ' 

(4) -SiEk +CllqlcosOl=S2Ek +C2lqlcos02. 

From (2) and (3) we see that 01 = 02 = 0, ¢1 = ~°2 = ~" When t 1 = t 2, S 1 = - S  2 = S 
and C 1 = C 2 = C, so that (4) is automatically fulfilled. From (1) we have 

(5) 2SIqlcosO=2CEk, 

and since for t 3 = 0, S = sinh X 1 = i and C = cosh X 1 = 0, we see from (5) that 
cos 0 = 0 or 0 = ½7r. Hence the limit, which determines the inclusive distribution, is 

¢1 =~P2 =~p' COS~0 -->oo , and 0 l = 02=  {Tr (2.23) 

2. 2. t-channel partial-wave expansion 

Referring to (2.1) and fig. la, the t-channel amplitude is denoted by 

T (t) = (b; /.t2, /.t 11Zl (~' ,  X', 0)T,~,  X, 0) (2.24) id2,1dl,h'h 

where ( . . . ) T  denotes the time reversed system. We introduce 0(3)  states in the 
3,7r channels t 1 and t 2 to obtain the partial-wave expansion 

T(t) = ~ (~,Ia2,1JIlTtJ',M',X',J,M,X)(J',M',X'I(~',~',O)T) 
la2'Ul'h"h J ' , J ,M' ,M (2.25) 

X(J,M, X[~, X, 0 ) .  

The expansion coefficients are given by (using the Jacob and Wick convention [12]): 

(J1M1X[q, X,O)=NjDJ, x(~Ol 0 l , -  tpl) ,  N2 = ( 2 J +  1)/47r, 
(2.26) 

(J ' ,  m ' ,  ~k' [(q' ,  ~k', 0 ) T ) = N j , ( - - I ) J ' - M ' D Y ; , h ,  (tp 2, 0 2, --tp2) , 

where we use 

(T~0, T ~ )  = (tp, ~)* and TIJ',M',X')=(-1)J'-M'IJ',-M',X'). 

Hence 
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N : N j  :* J A = D - M ' , X ' ( ¢ 2 ' O z ' - - ¢ 2 ) D M  h(tPl'01'--tPl ) U2,Ul,X',X ' T ~ , u l , X ' , X j , , , , M  

where (2.27) 

A (0 ,x',x = ( - I ) J ' - M '  (/~'/t2'/'tl ITI J', M', X',J, M, X). (2.28) 
,u2 ,,tt 1 

We shall use later the truncated amplitudes 

7 ( t )  = e i ( X ¢ l  - x'  ~o2) T(t) (2.29) 
/.t2,/.tl, h', h ~2 ,#  1, h ' , h  " 

3. S o m m e r f e l d - W a t s o n  r e p r e s e n t a t i o n  and helicity poles 

In this section we discuss the Sommerfeld-Watson (SW) transformation of the t- 
channel partial-wave expansions defined in sect. 2. The problem of defining signatured 
amplitudes or partial-wave amplitudes that satisfy the conditions of Carlson's theorem, 
is closely related to the underlying analytic structure of the six-point function. This 
is in general expected to be rather complicated. However some simplified models do 
exist, which may be good approximations in certain circumstances [13, 14]. The 
most appropriate for our purposes is a generalized fixed t dispersion representation 
proposed by Dahmen, Steiner and Konetschny [14], which includes all the discon- 
tinuities appropriate to the double Regge expansion and explicitly satisfies the Stein- 
mann constraints [15] for the basic cuts *. This representation is written for the 
retarded function and is described in the appendix. It fulfills the causal requirements 
of the retarded six-point function and has the crossing properties one would expect 
from, for example, the dual six-point function [2]. The corresponding representation 
for the missing mass discontinuity in which we are interested is given by (see the 
appendix): 

, 2 1 2 ~ ~ , p~/(o~,o.,:4 , {t)) 

where 

s 1 =s = ( p + q ) 2  , s 2 = u  = ( p - k )  2 ,  

, , = + q ,  2 u '  ) , s 1 =s (p '  ) , s' 2 = = ( p ' - k '  Z 

and {t} denotes in general five t variables; however we shall restrict ourselves to the 
submanifold k = Xk', which is sufficient for our purposes. In general when we in- 
clude spin, the full amplitude infact is expressible in terms of a number of invariant 
functions, each having such a representation. However, it is well known [11 ] from 
the four point function that, when one removes the kinematic singularities, the hell- 
city amplitudes also have the basic representation. For k = ~q~',{t} = {t 1, t2, t3} we 

* By basic cuts we mean those involving multiparticle normal discontinuities. 
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write the helicity structure functions T t ~, defined in sect. 2 in the form (neglecting 
the spin of  the proton) 

z(t) _ 1 ~ ~ ~ ~ (2J+l)(2f+ 1) 
X',X 167r 2 M=-o~ J=M M'=-~ J'=M' 

(3.2) 

× z'M' d_M,,x (x ')  zMdJM, X (x)Atx' ,x  ( J " M " J ' M ' M 2 '  {t}) ,  

and from (3.1) and (3.2) we see that we can discuss the (SW) transformation of the 
respective partial-wave summations separately. To this end we write (3.1) in the form 

, 2 o~ , 2 

f × f Ou(u'  tl, M X, 2 O) = 1 Ps(S t 1, m , o) + 1 du', , o) 

T(s, t 1' MX'  -~ ds' s" ~ s + & rr u - u + ie ' 

where 
oo ¢ 2 

2 ( , P u ( S  ' o j , g x ,  t l  ' t2 ' t3 ) 
1 ~ doj , , . - -  (3.3) Ps (s, q ,M , o ) : ,  j:l ' 

and similarly for Pu replacing Pl j  by P2j and (3.2) in the form 

1 M~=_o~ J=Max~ IMI,[XI ( 2 g + l ) z M 4 " x ( x ) a h ( J ' M ' t l ' M 2 ' ° )  Tx(z,  x, t t, M 2 , v) = 

(3.4) 
1 

t l ' M 2 ' u ) = ~ 7  Izl=l -1 
a2k ( J, m,  

zM+ 1 

In (3.3) -- (3.5) we have used v to denote the set of unexhibited variables. The 
connection between (3.3) and (3.4) comes about when we remove the half angle 
kinematic singularity factor from (3.4) * i.e. 

Tx = \ 1 + x I T.  (3.6) 

The angular variables in (3.4) are related to the variables s and u defined in (2.15), 
from which we obtain 

S ~ = a z ( l _ x 2 )  ~ + b x + c  , z = e  i~° x = c o s 0 ,  

where 

t/ - 1 X-~ (tl ,  q2, m2r) + ao 
2t I sinh X1 

b =a cosh X1 + b 0 
* Here we concentrate  on only the singularities relevant to the present discussion. 

(3.7) 
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c = ½ ( t  l + q 2 - m  2)+c0  , (3.7) 

(a0, b 0 and c 0 all vanish like t 3 as t 3 ~ 0 and are of order MX2. ) Using (3.7) we can 
replace (3.3) by 

7"/" Z --Z 71" Z --Z 
-Uo(X) 1-Uo(X) 

where in the limit s, s/M 2 >> 1, T r = O(1/s) and Uo(X ) = (bx +c)/a(1 - x 2 )  ~ . (3.8) is 
sufficient to allow us to define the Gribov-Froissart projections of the partial-wave 
amplitudes (3.5) into both the complexM and J planes and consequently to make 
the SW transformation of (3.4). We begin by considering the summation over M, 
where we essentially repeat the analysis of White [10] and write (3.8) in the form 

l ( f  s_ s s_lo T = + + + z ,p (3.9) 
÷ - - Z  

R> R< R< 

where 

R> +- = { I z l > l , R e z ~ O } ,  R<+ = { I z l < l , R e z - ~ 0 }  , 

and p can be read off from (3.8). Writing (3.4) and (3.5) in the form (suppressing 
for the moment the x dependence) 

T = ~ b Mz M , (3.10) 
M=-~ 

b(M) = tzl=l zM+lT(Z) '  (3.11) 

and inserting (3.9) in (3.11) we see that 

b(M)=lb>(M), M>iO , 

tb< (m) ,  m < 0 ,  

where 

b (M) = b (J4) + 

with 

1 7 b~(M)=~ f dz'z '-M-1 p--~ f d z ' ( - g ' ) - M - l p .  (3.12) 

+ R~ R~ 

Hence b(M) is separated into four sets {b~ (M)} according to whether M is even or 
odd and M/> 0 or M < 0. From (3.12) it is easy to see that 
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[b>(M)i<(eaIMI), Re M:> 0 , 

Ibr<(M)l<(e~lMt), R e M < 0  . 

as IMI ~ oo with a < 7r. Hence the {b~ (M)} satisfy the conditions of Carlson's theo- 
rem and therefore can be projected to complex M; correspondingly (3.10) has the 
SW representation 

T=2i ~ { [> dM(-1)Mb>(M)~(zM . sinMn 

(3.13) 

+ f dM(-1)MsinMTr b<r (M) ½ (zM+T(--Z) M) , 
C< 

where the contours C<> are shown in fig. 2. In eq. (3.13) 

b~(M,x)= ~ (ZI+ 1)arx,~(J,M)dJ, x(x), (3.14) 
J-Max IMI .Ikl 

where 
1 

arx, e (J, M) = f dx dJ,x(x) b r .~ (M, x) . (3.15) 
-1 

We now consider the problem of continuing a~,,e (Z M) to complex J, restricting 
ourselves to the X = 0 case (generalization to X = +- 1 is essentially only technical). A 
representation of the {b~(M)} can be read off from eq. (3.8) to (3.12) and it shows 
that they have a complicated overlapping cut structure in x. Part of this however is 
induced by the representation itself through the half angle kinematic factor 

r h  2 l (1 - x 2 )  -5 ti It. We therefore consider (1 - x  )~ tMI bre(M, x), which from the original 
representation (3.3) we know must be analytic in the upper half x-plane. This means 
we can represent the function by 

o o  

(1 --X2) ~IMI b r ~ (M, x) : f ~ (M, 1~) e ic~x do~ , (3.16) 
0 

where the specific form of f~  is of no interest to us. Inserting (3.16) in (3.15) we 
obtain 

oo 1 

a; v,M)= f d I;(M, f (3.17) 
0 -1 

where 

x~ _ [ r ( J -  x + ~ r ( J 2 x  + - E ~  ~ 
N(J, M, , - \E- -~_M¥ 1) F(J -M + 1)] ' (3.18) 
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i 
M-p|ane 

p, 

C< C> 

Fig. 2. Configuration of the contours in the Mplane. 

and P(~'~) (x) are Jacobi polynomials. 
n 

Using the symmetry property 

p~,M) (X) = (-1)J P (M'M) (-x) , 

we can write 

(3.19) 

0 0 

for J even , (3.20) 

2iN(J,M,O) ) a r ¢vc - d f~(M,~)fdxsin (1 xz)MeJM'M)(x) 
0 0 

for J odd .  

Hence if we define the signatured amplitudes 
1 

a~S(S, M) = f (ix dJ, o(X) (b•(M, x) + s(-1)d br~(M,-x)) . (3.21) 
-1 

we obtain for them the representation 
~o 

a~(J,M) = e ~i'rJ { F(J +M + I)~ ~ f dc~f~(M, a) ¢e -M-]  Jj+M+~(cO 
! , r ( J  ± M  + 1)] 

o (3.22) 
(similarly for a s (3", M)). Using 

lim J ( z ) = ~ ( ~ - ~ )  v , (3.23) 
p - - + o o  

we see that 
oo  

(J, M) "" e~irrJ fo da f r  (M, o 0 (3.24) T $  
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Hence the signatured partial-wave coefficients separately satisfy the conditions of  
Carlson's theorem and can be projected to complex J. 

The SW transformation of  the J summation is now straightforward; we write 

J+ (J, M) + l(1 - ( -  l)J)  a~-  (J, M) , (3.25) a~ (S, 34) = ½ (1 + ( - 1 )  J) a<> 

and 

b r (M, x) = - 2 i  a o(X) , (3.26) <> s in  rr(J - r (j, M) dM, 
CO 

where the contour C O is shown in fig. 3a (dotted curve). Since we expect no singu- 
larities to the left of  C o arising from (sin 7r ( J - M ) ) - 1 ,  we replace this factor by 
F ( J  - M) and redefine a~ accordingly (see eq. (3.28)). We note if in fig. 3a the con- 
tour encloses the point J =j, j = 0, 1 ,2 . . . .  then theM contour C> and C< in fig. 2 
will be pinched at respectively M = 0, 1 . . . .  , J and M = - l , - 2 , . . . , - J .  If  one 
avoids Regge singularities we can without ambiguity simultaneously distort the con- 
tours C O and C.~ to respectively to C (fig. 3a) and the line ReM = -½(fig. 3b). We 
thus obtain the required SW representation 

T = 1 ~ f dM ( ( - z f  u + r z M) (b>(M) + b<(M)) (3.27) 
2i sin nM 7-=_+ 

with 

C 
A similar analysis can be carried through for X :/: 0. However since the J summation 
runs from J = max (IMI, I XI), one should remove the discrete contributions for 
J ~< [X[ and treat these as additional background terms, 

For the primed J-M summation we return to (3.1) and (3.2) and repeat the above 
analysis with the important difference that the opposite ie enters in the dispersion 
representation, which means 

{Re M >0  } 
Moving 
Regge - -  
Pete 

I b 
o o o o Poles of P(-3+M) 

t M M+I M,,Z .,,- . . . . .  

0 C 

3- plane 

Re M =-  1/2 

(o) (b) 

Fig. 3. (a) Configuration of the distorted contour in the Y plane. The dotted curve reproduces 
the partial-wave summation. (b) The distorted curve in the M plane. The deformation from the 
Re M = - ~ corresponding to the distortion of the J contour in (a) around the Regge pole. 
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s' _ a ' z ' -  1 (1-x'2) ½ + b'x '  + c' . (3.29) 

We are now in a position to write the full double SW representation for the t-channel 
helicity amplitudes T (t) viz X',R "' 

T( t ) -1  ~ f d.M ((-z)" dM' 
x',x - Z 2i sin 7rM 2i sin rcM' ( ( - -z ' ) -M'  + r Z ' -M')  

r',r ReM=-} ReM'=-} 

T'a,T T'~ T TI~T T'~T X {bx,,x,>,> + bx,,x,>,< + + } , bx',x,<, > bx',x,<, < (3.30) 

T',T ~ / ' d J '  P ( - J '  + I M ' I ) f  dJ  
bx',x, ~, ~ o 2zri = ~ F ( - J +  [M[)(1 +s ' ( - l ) J ' ) (1  +s(-1)  J) 

' c c ( 3 . 3 1 )  

X r', r,s',s ( J ' ,M '  J ,M,  t l ,  t2, t3) dJ_'M ,, ' J X ' ( - x  ) d v ,  h(--x ) ah',2t, ~,  ~ 

We end this section by considering the contribution of a Regge-pole dominated 
mechanism in the H.P.L. (see sect. 2), for which, if we neglect for the moment nor- 
mality 

1 
- 8 a= * (a 2 t2)/3~' (q2, tl  ) ( J ' -  °e2(t2)) ( ] -  °el (t 1)) ah, ,h,~,~ - t.Tt, , 

(3.32) 
t 

X F a2% (M~,M~,Mx 2, t l ,  t2, t3) . 

, 2 where F % % (M, M ,  M X, t l , t 2, t3) is the Regge-particle discontinuity function, 
which depends on the helicity variables M and M'. We perform the J plane integrals 
by extracting the Regge pole residues. Through the gamma functions, this introduces 
helicity poles at sense values M = c~j, a I - 1 , . . .  (similarly for M'). Remembering in 
the forward H.P.L. z = z '-1 ~ s /M~ -~ ~ we need only retain the contribution from 
the leading helicity pole, which yields 

T(,) =e~?*(q2, t)~2,(q2, t)(l+r'e-in%(',~ *t l+re -i~%(t, } 
x',x s i n r r ~ - ~  ] ~ sinrrcq(t) / 

x I' Y (')*°'(') ~M 21 F %% (-c~2(t), cq(t),Mx 2 , t, t, 0) . 

(3.33) 

We notice that the leading behaviour is determined by the maximal helicity flip 
in the Regge particle forward discontinuity. It is apparent from the above analysis 
that this is a direct consequence of the ie prescription involved in a Mueller discon- 
tinuity and has little to do with the dynamics of Regge particle amplitudes. 
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4. Crossing and the normality properties 

In this section we discuss the crossing relations and the construction of helicity 
structure functions of definite normality. We then consider the Stichel theorem for 
the Regge limit cos 0 l, cos 0 2 -+ o% leaving the derivation of the corresponding rela- 
tions in the H.P.L. to sect. 5. 

The crossing matrix can be constructed by using the well known properties of the 
helicity states under boosts and rotations [ 12]. The general crossing relations be- 
tween the s-channel amplitudes T(s) defined in (2.2) and the t-channel amplitudes 
,v(t) (2.1) is given by -{~} 

' (Rp) I; T(S) = S "~ (t) D ' *  (Rp,)D~._ ~, ,(RT,)olv(R.r 
h,,i.t2,k,/2 ' Z.../ T#'2,/2' 1 v ,v  /22/2~ /z', 

v',v,/2',,/2'a (4.1) 

We obtain for the helicity averaged amplitudes in the forward direction Rp, = Rp  1 
namely 

T(S) = 1 ~  T(S) (4.2) 
x',X 4 ~-' ,/21 ; h,/21 

/21 

T(t) 1 ~ ,,,(t) x' x 
/21 

the crossing relation 

T (s) = ~ T (t) D 1. (RT) D I v ( R )  (4.3) h',K , v ,v h'v' 
V~V 

In the Regge limit, where cos 01 and cos 0 2 are the relevant dynamical variables it is 
simple to see that the s-channel amplitudes obtained by setting the azimuthal angles 
~0 and ~0' equal to zero, are related by crossing to the truncated amplitudes 

7 (  0 = e-i(~.~l-x'~o2) T(t) (4.4) 
k ' , h  h ' ,  k " 

In the forward direction 01 = 02 the crossing relation reducing correspondingly to 

"~(s) = ~_j T(t)  dl, v,(X) d l ( X )  (4.5) l~k' ,~k , V ' ,P  

V p 

where cosx  =Eq/Iq[. 
Because of (4.4) the relevant dynamical variables in (4.5) are cos 01 and cos 0 2. 

In the H.P.L. we saw in sect. 2 that 01 = 0 2 = ½7r and ~01 = ~0 2 = ~p with cos ~p ~ 0% In 
this case the t-channel vectors q and q'  have a different orientation than that they 
have in the Regge situation so that the crossing relations have to be correspondingly 
modified. We shall discuss this in sect. 5 and restrict ourselves here exclusively to 
the Regge configuration, in which the azimuthal dependence is completely factored 
out. 
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From (4.5) it is a simple matter to show that the combinations 

7( t )  
-_ ~1,1 - l l , - I  ' 

together with ~(t) and "T~t) 0 transform under crossing according to 11,0 

, o o o 

T(S) 

T(S) 
l,O 

, T ~s) 

L-O, O_ 

0 cos 2 X V'2 sin X cos X sin2 X 

1 ___~_I ~ sin X cos X 0 v ' 2 c ° s x s i n ×  c°s2x 

0 sin 2 × -2x/~ sin X cos X cos 2 X 

(4.6) 

7 (01 . 
- / ( 4 . 7 )  

/0,0) 

4. l. States o f  definite normality 

Angular momentum states in the 77r system with definite normality n = ( -1 )JP  
where P is the parity, are defined by 

1 IJ, M, X, O , n ) = ~  (IJ, M, A, O ) - n l J ,  M, - ~ , 0 ) )  . (4.8) 

so that 

( -1)J  PIJ, M, X, O,n)=n[J,M, ~, O,n) . (4.9) 

The partial-wave amplitudes with definite normality are correspondingly given by 

A n''n (J ' ,M' ;J ,M;~)=( f i ,  bt2, Ul]TJJ',M', ~',O,n';J,M, ~,O,n) (4.10) 
t~2, ~t~ ;7~',h 

and have the following symmetry relations 

A n', n , , jz~,~x;_~,,h(J,M ;J,M, f g ) = - n ' A  n'n , , ~t~,~,;x,,~ ( J , M  ;J,M,}~) 
(4.11) 

A n'n (J ' ,M';J ,M, f i ) = - n A  n'n (J' ,M',J,M,}~) 
t~2, lal ;~', - ~  #2,~1 ; k ' , k  " 

With (4.8) we can express the states I J, M, X, 0 ) in terms of states with definite nor- 
mality and by making use of(4.10) we can rewrite the partial-wave summation 
defined in (2.27) in the form 

T(t) 1 ~ d'* D y = - Nj 'N jD-M' ,  ~' (~°2' 02-~°2) M, h(tPl '01 --~Pl ) ~t2,# 1 ;h',h 2 J',J,M',M 
(4.12) 

X ~ A n',n x ( J ' ,M ' ; J ,M;~)  
, ta~,~t~ ;h', 

I I , n  

By virtue of the symmetry relations (4.11) of the partial-wave coefficients with 
definite normality, we have the following equations for the t-channel helicity ampli- 
tudes when either ~ = 0 or ~' = 0 
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T (t) = - n T (t) for X' = :t: 1 ,0  
~ 2 , ~ t  ; h ' , 0  # 2 , ~  ;h ' ,  0 

and (4.13) 

T (t) = - n '  T (t) for X = + 1 ,0  
~u2,~ ~ ;0 ,  ~. /~2,#1 ;0 ,  h - " 

This means that only n = - 1  states can contribute to T (t) . ~ , ,  and n' = - 1  state 
, ~2 , t s~ ,  , u .  ( t )  

to T (t) Furthermore only the term n = n = - 1  can contribute to T 
V-2 ,O.~ ; 0 ,  h" ~2,O.t ; 0, 0" 

4. 2. St ichel  relations in the limit cos 01, cos 0 2 ~ oo 

If  we set tpl = ~P2 = 0 and let cos 01, cos 02 ~ ~ we can obtain additional con- 
straints, because the d J functions satisfy in the limit cos 0 ~ ~ the relation 

d J , _ x  (cos O) = ( - 1 )  x d J ,  x (cos O) . (4.14) 

Using (4.11) and (4.14) we obtain to leading order (cos 01) J (cos 02 )J the relations 

T (t) = ( - 1 )  x'+l n' T (t) T (t) = ( - 1 )  h+l n T (t) 
#2 , .u l  ; - h ' , h  ,0.2 ,~a ;k' ,  h ~ ,e.2, ~ l  ; h ' , _  h /a2,p.t ; h ' , h  ' 

(4.15) 

For X' = X = 1 (4.15) tells us that 

T (t) T( t )  T (t) ' T (t) (4.16) u2,ut ;1,-1 = n = n ~%,t~1;1,1 ' #2,#1;-1,1 ~2,~;1,1 ' 

which means the appropriate linear combinations are dominated respectively by 

positive and negative normali ty states in the t 1 - (7(q) l r ( -k ) )  channel, a correspond- 
ing relation holding for the t 2 - ( 7 ( - q ' )  7r(k')) channel. The relations (4.13), (4.15) 
and (4.16) are valid for arbitrary proton helicities ~/2 and/~1. However if we restrict 
ourselves to the inclusive distributions averaged over the proton helicities T (t) (see h ' ,K 

ec b (4.2)), then we obtain additional constraints. By virtue of  parity invariance 
Tx~t) x satisfy 

T(t)  = ( - 1 )  x ' - x  T (t) (4.17) 
- h', -- h h', h ' 

and together with (4.15) it follows from (4.17) that 

(a) T ( t)  = T (t) + T (t) 4 :0  for n = n'  = 1 
- 1 , 1  1 , - 1  

while 

T(t)  ,,~(t) _ T(t)  4 : 0  for n = n' = - 1  
- = ~ 1 , 1  1 , - 1  

while for X' = 1, X = 0 (4.15) and (4.17) lead to the relation 

(b) T (t) = - T ( t ~  4= 0 for n = n '  = - 1. 
1,0 0 

~,,(t) derive above we have in summary the asymptotic  Together with result for 10, 0 d 
relations: 

(t) = T(t)  + T(t)  
(1) T+ 1,1 1,-1 
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is dominated by positive normality states in the 77r channels; 

(2) T (t) T(t )  _ T(t) .v(t) ,r(t) 
- = - - l ,  1 1 , - 1  ' 1 1 , 0 '  1 0 , 0  ' 

are dominated by negative normality states in the 77r channels. 
(1) and (2), derived here in the Regge limit cos 01 , cos 02 ~ oo is our main result. 

It is important to note that the helicity averaged amplitudes (4.2) cannot have asymp- 
totically interference terms involving opposite normalities in the respective 7n-t- 
channels. Such terms would only appear if polarized targets were used. It follows 
from the crossing relation (4.7) that in the limit 01 = 02 the relations (1) and (2) 
carry over to the s-channel helicity structure functions, which are directly related 
to observable quantities [7]. 

Now we analyze the normality content o f  the t 3 channel in the limit cos 03 ~ oo. 
For this purpose we expand the state I/l 2, PI' ~ ) into partial waves in the PP center- 
of-mass system. The expansion is: 

(~;tl2,Pl lTlJ', ~ ' ,  2~', n';J,M, ~, n) 
(4.18) 

= ' ' M ' , ? ( ,  ' . N] d/M,_M,u2 - p ,  ( 0 3 ) ( ] , P 2 , t l l l T l J ,  n;J ,M,  k n )  . 
1 

As for the other two channels we define states of  definite normality T: 

_ 1 p2, Ul )+TI] ,  m, - P 2 ' - / a l  )} ]], m, p2, Ul, 7 - ) - - ~  {1/, m, 

so that 

( - 1 ) ] P  If, m, g2'  P l '  T) = T I/, m, P2' g l '  7") ' 

and 

(4.19) 

(4.20) 

= ~-(j, m, p2,Pl,7" [TIJ' ,M',  k', n';J,M, ~, n) . 

With this and the asymptotic  relation (for cos 03 ~ oo) for the dJ functions: 

(4.23) 

According to (4.19) the partial-wave amplitudes with definite normality in the t 3 
channel obey the relation 

(L m, --P2, -P l  ,T [TIJ', M', ?(, n';J,M, ~, n) 

f/, m,  - P 2 '  - P l '  T) = 7 I/, m, P2'/11' T) . (4 .21 )  

With the states (4.18) we express (4.17) in the form 

(p, pz, PlJTlJ' ,  M', ~', n';J, M, k n) 
(4.22) 

1 . . . .  

- ,_M,g2_U (03) (./,/.t2,/./l, 7- fTIJ ,M,  X, n;J ,M,  k n ) .  
V ~  ],7" 
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diM, M,_Oa=_~,l) (03) = (--1) u=-u '  diM,_M,u=_U, (03) . (4.24) 

we obtain 

(p , - - la2,-UlITIJ ' ,  M',  X', n';J, M, ~, n) 
(4.25) 

= r ( - 1 )  u2 -u l  (/3,/a2,/JIlT I J', M', X', n'; J, M, X, n ). 

The result (4.22) tells us that the combinations 

(p, IJ2,1,tl I TI J ' ,M'  , ~', n'; J,M, ~, n) 
(4.26) 

+- (--1)u= -ta, (p,/a2,/~1 I TIJ', M', )t', n'; × J, M, ?t, n) , 

with the + sign have only positive (negative) normality exchanges in the t 3-channel. 
In particular, for the helicity averaged amplitudes, defined in (4.15) only states with 
positive normality can contribute asymptotically. States with negative normality 
contribute only if the helicity of  the target pro ton  is fixed (inclusive polarization ex- 
periments). It is clear that the relation (4.26) is useful to select the observables in 
which different normalities in the t 3 channel can be detected * 

5. The Stichel relations in the helicity pole limit 

In the H.P.L. the crossing relation has to be modified, because, compared to the 
Regge configuration discussed in the last section, the vectors q and q '  are orientated 
differently in the t-channel. However it is sufficient to compute the crossing relation 
between the two respective t-channel situations, characterized by q = q0 (Regge) and 
q = q~ (H.P.L.), where, referring to sect. 2: 

q o = ( i l q l c o s O ,  IqlsinO, O, iEq) , q~o=(O,Iqlcos~o, lqlsin~o, iEq),(5.1) 

qo and q~ are related by a complex boost along the y axis i.e. 

q~o = B y(~ irr) qo ' (5.2) 

where in addition we have cos 0 = sin % Because of the difficulty of  defining the rest 
frame of the photon,  we shall use as the standard frame in the t-channel that defined 
by 

q = (Eq, 0, 0, I q l ) .  (5.3) 

This frame is reached by the complex boost Bz(½iTr ) along the z axis. The Wigner 
rotation corresponding to (5.2) is given by 

R w = Bz(-½irr) By(½ in) Bz(½irr ) = R x (½70 . (5.4) 

Thus according to the general transformation law of  the helicity states [12] we have'  

* For a related discussion of polarization effects in inclusive reactions see [ 16]. 
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, 1 UCBy(½iTr))lq o , X) = ~ Iq+, X )Dx,,x(R) , (5.5) 
X' 

where, if we restrict ourselves to the forward direction in the H.P.L., for which 
0 = ½7r t henR  is given by 

8 = Ry(-½1r)  RxC½rr ) Ry(½rr) Rz (  - tp) = Rz  (1 ff-~o) . (5.6) 

Hence the crossing relations involve simply a phase 

U(By(½ iTr))lqo, X ) = e i(~ rr-~)x Iq¢, X ) .  (5.7) 

From (5.7) we see that the ~p phase factors out in such a way that the s-channel am- 
plitudes are related through crossing to the reduced t-channel helicity amplitudes 
defined in (2.29). However we are left with the additional X dependent phase factor 
e '  i ,x  in the H.P.L. Therefore instead of  (4.12) we have now the following partial- 
wave expansion in terms of  amplitudes with definite normality: 

T(t) _ 1 ~ Nj,Njz,M'zMih'+~ 3 ~ , J _ - d_M,x,(~Tr ) dM, ~ (½70 
~ta,ta ~ ;X',X 2 Y,J,M',M 

× ~ A n ' , n  x ( j , , M , ; J , M  ) (5.8) 
n',n #2'#~;X" 

where z = e i~° and z '  = e - i C .  
Using the symmetry relation for M = J 

(½.)= J d~_ ; t ( :  7r ) , (5.9) 

and (4.1 1) for the partial-wave amplitudes with definite normality we recover for 
the leading helicity pole in the H.P.L. from (5.8) the relations 

T (t) = ( - 1 )  h'+l n' T (t) T(t) _ h+l T(t) 
~2 ,#2 ; - - h ' , h  ~2 ,#1 ;h ' ,  X ' # 2 , ~ 1  ; h ' , - - h  - ( - - 1 )  1"/ /z2 ,/.t I ; h ' , h  ' 

(5.10) 
which are identical to the relations (4.15), derived in the Regge limit in the last sec- 
tion. It is clear then that all the further consequences derived from (4.15), at the end 
of  sect. 2 are also true in the helicity pole limit. This completes our analysis, in which 
we have seen that, inspire of  the kinematic and analytic peculiarities involved in the 
reggeization of an inclusive distribution, one recovers the usual properties one has 
come to associate with a Regge theory, through the study of the four point function. 

We wish to thank H. Dahmen, W. Konetschny, F. Steiner and P. Landshoff for 
very helpful discussions. 

Appendix. The generalized fixed t dispersion relation 

We record here the generalized fixed t dispersion representation of  the six-point 
function mentioned in sect. 3 and on which our analysis was based. The idea [14] is 



90 N.S. Craigie, G. Kramer, Mueller-Regge theory 

to write a causal multiple Cauchy representation of the retarded function in the 
physical region, in which we are interested. This is done by singling out the positive 
energy vector p, with which one defines the s and u variables. All channel invariants 
not involving p or its related vector p '  define generalized t variables, which can be 
held below their respective thresholds. We define Pi,  • • • ,  4, where referring to sect. 2, 
p; = { - k ,  q, k', -q ' } .  

The s variables are defined by: 

si = (P - Pi )2 sij = (P - Pi - p j )2  Sijk = (P - -Pi  - - P / - - P k  )2 

while the t variables are given by 

t.. = (Pi + p/)2, (A.1) 
l] 

{i, j, k}. are permutations of  (1 ,2 ,  3, 4 } .  
(A.1) defines nine variables, which are related through one Gram determinant 

constraint i.e. 

Gram det. {p, P l '  P2, P3' P4 } = 0 , (A.2) 

which relates in general the s and t variables. However, if we choose 
3 

P4 = ~ ~ki Pi ' ~ti = ~i ( tij ' t4 j )  ' (A.3) 
l l "= 

then we satisfy (A.2) by forcing a relation only among the t variables. In this case 
we can write a multiple Cauchy representation, involving at most triple discontinui- 
ties. Such a representation has only the allowed normal threshold (see the dual dia- 
gram in fig. 4), i.e. explicitly satisfies the Steinmann constraints [15]. Concentrating 
on only the triple discontinuity, the representation is given by 

-p p' 

P = ~ P t  

I II ~ \\\ 
(p-pl) 2 I I (P-Pi-Pj "Pk }2 

I 
(P-Pi-Pj)2 

Fig. 4. Dual diagram for a given term in the dispersion relation. 
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p p' 

Fig. 5. Discontinuity with respect to pO of the retarded function. 

ret - Pl,  P2, P3, P4)  13 ~ f T 6 (P, = - -  do 1 
penn oo 
i , j , k  

×fao  1 fdo  
Oo o 2 - ( p + - - p i - - p / )  2 

01 -- (p+ --pi  )2 

03 -- ( p + - - p i - - p i - - p k ) 2  
(A.4) 

X P6(O1,02, 03; {ti/}) , 

where p+ = (pO + ie, p)  and for scalar particles p6 (. . .  ) is given by: 

06 (s i, sij, sij k , {tij } ) 0 (po)  0 (Po -- Pio ) 0 (Po -- Pio -- PjO ) 0 (Po -- Pio -- PjO -- Pk 0 ) 
3 

=_1123 f ~ d4 x r e - i (p i °x l+p j ' x '+pk 'x ' )  (A.5) 

• , , t 

X ( p [ j ( x l ) l ( X 2 ) l ( X 3 ) l ( O ) [  p ) . 

If we consider the total discontinuity of T~etwith respect to~op0 i.e. 

I ~ fdolfdo2fdo306(o1,o2, o3,{ti/}) Discpo 
T ~ t ( p ' P l ' P 2 ' P Y P 4 ) = n  -'-~ penn o0 oo o0 (A.6) 

X DiSCpo 
(o 1 _ (p _pi)2) (02-  (p  _ p i _  p/)2) (03 _ (p  -- Pi -- Pj -- Pk )2 

Then denoting D[ = (o i -(p-+ _pi)2)-I  we have 

DiscpoDID2D 3 - " + r ~ + r l + - D I D 2 D  3 -  + + + - + + - ~1~2~3  - D 1 D 2 ( D 3  - D 3  ) +D1 (/92 - D 2 ) D 3  

(A.7) 
+ ( D + I - D 1 ) D 2 D 3  , 

i.e. we can decompose this discontinuity into the three basic discontinuities shown 
in fig. 5. The middle term fig. 4c is of the Mueller type and we must extract from 

2 2 the representation all such terms, i.e. by setting sij = (p  - Pi - Pj) = M x" It is simple 
to see that there are four such terms and collecting these together we obtain the re- 
presentation for the Mueller discontinuity given in sect. 3. 
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